Irreducible projective characters of wreath products
نویسندگان
چکیده
منابع مشابه
On the irreducible characters of Camina triples
The Camina triple condition is a generalization of the Camina condition in the theory of finite groups. The irreducible characters of Camina triples have been verified in the some special cases. In this paper, we consider a Camina triple (G,M,N) and determine the irreducible characters of G in terms of the irreducible characters of M and G/N.
متن کاملRooted Wreath Products
We introduce “rooted valuation products” and use them to construct universal Abelian lattice-ordered groups (with prescribed set of components) [CHH] from the more classical theory of [Ha]. The Wreath product construction of [H] and [HMc] generalised the Abelian (lattice-ordered) group ideas to a permutation group setting to respectively give universals for transitive (`-) permutation groups wi...
متن کاملOn Squares of Irreducible Characters
We study the finite groups G with a faithful irreducible character whose square is a linear combination of algebraically conjugate irreducible characters of G. In conclusion, we offer another proof of one theorem of Isaacs-Zisser. There are a few papers treating the finite groups possessing an irreducible character whose powers are linear combinations of appropriate irreducible characters, for ...
متن کاملEigenvalues of Random Wreath Products
Steven N. Evans Department of Statistics #3860, University of California at Berkeley 367 Evans Hall, Berkeley, CA 94720-3860, U.S.A [email protected] Abstract Consider a uniformly chosen element Xn of the n-fold wreath product Γn = G o G o · · · o G, where G is a finite permutation group acting transitively on some set of size s. The eigenvalues of Xn in the natural sn-dimensional permuta...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 2014
ISSN: 0002-9939,1088-6826
DOI: 10.1090/s0002-9939-2014-12343-4